A note on [k, l]-sparse graphs
نویسندگان
چکیده
In this note we provide a Henneberg-type constructive characterization theorem of [k, l]-sparse graphs, that is, the graphs for which the number of induced edges in any subset X of nodes is at most k|X| − l. We consider the case 0 ≤ l ≤ k.
منابع مشابه
A note on 3-Prime cordial graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کاملPebble Game Algorithms and (k, l)-Sparse Graphs
A multi-graph G on n vertices is (k, l)-sparse if every subset of n ≤ n vertices spans at most kn − l edges, 0 ≤ l < 2k. G is tight if, in addition, it has exactly kn − l edges. We characterize (k, l)-sparse graphs via a family of simple, elegant and efficient algorithms called the (k, l)-pebble games. As applications, we use the pebble games for computing components (maximal tight subgraphs) i...
متن کاملPebble game algorithms and sparse graphs
A multi-graph G on n vertices is (k, l)-sparse if every subset of n ≤ n vertices spans at most kn − l edges. G is tight if, in addition, it has exactly kn − l edges. For integer values k and l ∈ [0, 2k), we characterize the (k, l)-sparse graphs via a family of simple, elegant and efficient algorithms called the (k, l)-pebble games.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005